Dynamical systems are found in innumerable forms across the physical and biological sciences, yet all these systems fall naturally into universal equivalence classes: conservative or dissipative, stable or unstable, compressible or incompressible. Predicting these classes from data remains an essential open challenge in computational physics at which existing time-series classification methods struggle. Here, we propose, \texttt{phase2vec}, an embedding method that learns high-quality, physically-meaningful representations of 2D dynamical systems without supervision. Our embeddings are produced by a convolutional backbone that extracts geometric features from flow data and minimizes a physically-informed vector field reconstruction loss. In an auxiliary training period, embeddings are optimized so that they robustly encode the equations of unseen data over and above the performance of a per-equation fitting method. The trained architecture can not only predict the equations of unseen data, but also, crucially, learns embeddings that respect the underlying semantics of the embedded physical systems. We validate the quality of learned embeddings investigating the extent to which physical categories of input data can be decoded from embeddings compared to standard blackbox classifiers and state-of-the-art time series classification techniques. We find that our embeddings encode important physical properties of the underlying data, including the stability of fixed points, conservation of energy, and the incompressibility of flows, with greater fidelity than competing methods. We finally apply our embeddings to the analysis of meteorological data, showing we can detect climatically meaningful features. Collectively, our results demonstrate the viability of embedding approaches for the discovery of dynamical features in physical systems.
translated by 谷歌翻译
Dynamic Movement Primitives (DMP) have found remarkable applicability and success in various robotic tasks, which can be mainly attributed to their generalization and robustness properties. Nevertheless, their generalization is based only on the trajectory endpoints (initial and target position). Moreover, the spatial generalization of DMP is known to suffer from shortcomings like over-scaling and mirroring of the motion. In this work we propose a novel generalization scheme, based on optimizing online the DMP weights so that the acceleration profile and hence the underlying training trajectory pattern is preserved. This approach remedies the shortcomings of the classical DMP scaling and additionally allows the DMP to generalize also to intermediate points (via-points) and external signals (coupling terms), while preserving the training trajectory pattern. Extensive comparative simulations with the classical and other DMP variants are conducted, while experimental results validate the applicability and efficacy of the proposed method.
translated by 谷歌翻译
As a special type of transformer, Vision Transformers (ViTs) are used to various computer vision applications (CV), such as image recognition. There are several potential problems with convolutional neural networks (CNNs) that can be solved with ViTs. For image coding tasks like compression, super-resolution, segmentation, and denoising, different variants of the ViTs are used. The purpose of this survey is to present the first application of ViTs in CV. The survey is the first of its kind on ViTs for CVs to the best of our knowledge. In the first step, we classify different CV applications where ViTs are applicable. CV applications include image classification, object detection, image segmentation, image compression, image super-resolution, image denoising, and anomaly detection. Our next step is to review the state-of-the-art in each category and list the available models. Following that, we present a detailed analysis and comparison of each model and list its pros and cons. After that, we present our insights and lessons learned for each category. Moreover, we discuss several open research challenges and future research directions.
translated by 谷歌翻译
大多数现有的机器人收割机都使用单一的方法;单臂通过分离运动抓住农作物并将其脱离,或者通过特殊设计的抓地力/切割器最终效果切割茎。但是,这种单人的解决方案不能用于敏感的农作物和杂乱的环境(如葡萄和葡萄园),其中障碍物可能会阻塞茎并且没有空间容纳切割机的放置。在这种情况下,该解决方案将需要一个双人机器人,以便在视觉上揭开茎并操纵抓地力的作物,以创建与人类使用的实践相似的切割负担能力。在这项工作中,提出了一种达到茎预切口状态的双臂协调运动控制方法。配备刀具的摄像头正到达茎,尽可能将其揭开,而第二臂则将握住的农作物移向周围的自由空间,以促进其茎切割。在使用塑料葡萄簇的模型葡萄藤设置进行实验室实验可评估所提出的方法,涉及两个UR5E机器人臂和一个Realsense D415摄像头。
translated by 谷歌翻译
本文对地面农业机器人系统和应用进行了全面综述,并特别关注收获,涵盖研究,商业产品和结果及其能力技术。大多数文献涉及作物检测的发展,通过视觉及其相关挑战的现场导航。健康监测,产量估计,水状态检查,种子种植和清除杂草经常遇到任务。关于机器人收割,苹果,草莓,西红柿和甜辣椒,主要是出版物,研究项目和商业产品中考虑的农作物。据报道的收获农业解决方案,通常由移动平台,单个机器人手臂/操纵器和各种导航/视觉系统组成。本文回顾了报告的特定功能和硬件的发展,通常是运营农业机器人收割机所要求的;它们包括(a)视觉系统,(b)运动计划/导航方法(对于机器人平台和/或ARM),(c)具有3D可视化的人类机器人交流(HRI)策略,(d)系统操作计划&掌握策略和(e)机器人最终效果/抓手设计。显然,自动化农业,特别是通过机器人系统的自主收获是一个研究领域,它仍然敞开着,在可以做出新的贡献的地方提供了一些挑战。
translated by 谷歌翻译
自动诊断阿尔茨海默氏病的前驱阶段与患者治疗以改善生活质量非常相关。我们将此问题作为多模式分类任务解决。多模式数据提供了更丰富和互补的信息。但是,现有技术仅考虑数据与单个/多模式成像数据之间的低阶关系。在这项工作中,我们为阿尔茨海默氏病的诊断引入了一个新型的半监督超图学习框架。我们的框架允许多模式成像和非成像数据之间建立高阶关系,同时需要一个小标记的集合。首先,我们引入了一种双重嵌入策略,用于构建保留数据语义的强大超图。我们通过使用基于对比的机制在图像和图形级别上执行扰动不变性来实现这一目标。其次,我们通过半阐释流动进行动态调整的超晶扩散模型,以改善预测性不确定性。我们通过实验证明,我们的框架能够优于阿尔茨海默氏病诊断的当前技术。
translated by 谷歌翻译
保证案件提出了一个明确且可辩护的论点,并得到证据支持,即系统将按照特定情况下的意图运行。通常,保证案例提出了一个论点,即系统在其预期的上下文中将是安全的。值得信赖的AI研究社区中的一项新兴建议是扩展和应用这种方法,以保证使用AI系统或自治系统(AI/AS)在特定情况下将是可接受的道德。在本文中,我们进一步提出了这一建议。我们通过为AI/AS提供基于原则的道德保证(PBEA)论点模式来做到这一点。 PBEA参数模式为推理给定AI/AS的整体道德可接受性提供了一个框架,它可能是特定道德保证案例的早期原型模板。构成PBEA论证模式基础的四个核心道德原则是:正义;福利;非遗憾;并尊重个人自主权。在整个过程中,我们将参数模式的阶段连接到AI/作为应用程序的示例。这有助于显示其最初的合理性。
translated by 谷歌翻译
当与输入的高维投影结合使用时,多层感知器(MLP)已被证明是有效的场景编码器,通常称为\ textit {位置{位置编码}。但是,频谱频谱的场景仍然是一个挑战:选择高频进行位置编码会引入低结构区域中的噪声,而低频率则导致详细区域的拟合不佳。为了解决这个问题,我们提出了一个渐进的位置编码,将分层MLP结构暴露于频率编码的增量集。我们的模型可以准确地使用广泛的频带重建场景,并以细节的渐进级别学习场景表示形式\ textit {没有明确的每级监督}。该体系结构是模块化的:每个级别都编码一个连续的隐式表示,可以分别利用其各自的分辨率,这意味着一个较小的网络来进行更粗糙的重建。与基线相比,几个2D和3D数据集的实验显示了重建精度,代表性能力和训练速度的提高。
translated by 谷歌翻译
在这项工作中,提出了一种用于接近和揭示局部遮挡的感兴趣对象的控制方案。控制方案仅基于由连接到机器人末端执行器的手中相机获得的分类点云。结果表明,所提出的控制器在对象附近达到逐渐揭示每个可见点的邻域的感兴趣的对象。因此,它可以达到物体的完整揭幕。所提出的控制方案是通过模拟和实验评估的,用UR5E机器人用手中的RealSense相机在模拟藤设置上,用于揭示葡萄的茎。
translated by 谷歌翻译
随着塑料碎片的全球发行,它是技术行业跨越的时间。本研究旨在评估深度学习是否能够成功区分水下海洋生命和人造碎片。目的是找到我们是否安全地清理人工智能的海洋,而不会扰乱水生生态系统的微妙平衡。该研究探讨了保护卷积神经网络从保护生态系统的角度来看,而不是主要收集垃圾。我们通过构建一个定制的深度学习模型,使用原始数据库,包括1,644个水下图像,并使用二进制分类来对水生寿命进行合成材料。我们得出结论,虽然可以安全地区分碎片和生命,但较大的数据库和更强的CNN结构进一步探索具有更多有前途的结果。
translated by 谷歌翻译